Chapter 2: Experimental Methods

Scanning Probe Methods

Volume / Surface Averaging Techniques



Scanning Probe Microscopy
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Scanning Tunneling Microscopy (STM)
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Atomic Force Microscopy (AFM)
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Magnetic Force Microscopy (MFM)
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Scanning Capacitance Microscopy (SCM)
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Scanning Probe Methods:

Strength: excellent real space resolution combined with
magnetic, electronics, optical, ..... information

Weakness: slow, no depth information
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"For their services in the analysis of crystal structure by means of X-ray”
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face ; Q, slit of ionisation chamber.
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Generation of X-Rays
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Spectrum of the X-rays emitted by an X-ray tube with a rhodium target, operated at 60 kV. The smooth, continuous curve
is due to bremsstrahlung, and the spikes are characteristic K lines for rhodium atoms.
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A Monochromator Set-up

Determination of Crystal Orientation

» 4000
= : (220) reflection
Main b
}‘ncident bearlr; P E 3000} peail ?nt:r?;?ty A=1164
rom x-ray tube ) 180,000 c.p.m.
or reactor 242000+ P 2 (414(1))6 3
HER § (110) reflection AR
I O 1000 A =0582R
- . J

0° 10° 40°

WL

/ Beam from monochromator n=1
Monochromatin \
. l\ To crystal specimen

crystal
on rotating table

[/

2 (d/n) sinB = A

y

~—Undeviated
components of
main beam

Figure 3 Sketch of a monochromator which by Bragg reflection selects a narrow spectrum of
x-ray or neutron wavelengths from a broad spectrum incident beam. The upper part of the figure

shows the analysis (obtained by reflection from a second crystal) gﬁhmnmm

neutrons from a calcium fluoride crystal monochromator. (After G. Bacon.)



X-ray Powder diffraction pattern of Si

What contributes to the intensities ?
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Figure 4 X-ray diffractometer recording of powdered silicon, showing a counter recording of the
diffracted beams. (Courtesy of W. Parrish.)




n (x), x element of Basis

Scattering at the Basis
(Structure Factor, Atomic Form Factor)

OO0 OO0 00-~00

Scattering at lattice planes
(Bragg Reflection)



A crystal is invariant under any translation of
the form T= uia1+ uya, + uszas, where us, Uy, Uz
are integers and aj, a,, as are the crystal axes

Electron number density n (r) is a periodic
functionofr: n(r+T) =n(r)

Fourier Development: =ng+ | C, cos(2mpx/a) + S, sin(2mpx/a)] (3)

Fourier Coefficient
Real Space

n(x + a) =ny+ E[Cl, cos(2mpx/a + 2ap) + S, sin(2mpx/a + 2mp) ] ()

=ny+ E[C s(2mpx/a) + S, sin(2mpx/a)] = n(x) .

A lattice point in the Fourier Space



n(x) =2, n, exp(i2mpx/a) 1D
p
n, now are complex numbers. To ensure that n(x) is a real function
*
Tl_p ?lp
3D

The extension of the Fourier analysis to periodic functions n(r) in three
dimensions is straightforward. We must find a set of vectors G such that

n(r)=% ng exp(iG * r) (9)

is invariant under all crystal translations T that leave the crystal invariant. It
will be shown below that the set of Fourier coefficients ng determines the
x-ray scattering amplitude.



Reciprocal Lattice \ector

To proceed further with the Fourier analysis of the electron concentration we
must find the vectors G of the Fourier sum Zng exp(iG - r) as in (9).

We construct the axis vectors b, b,, b, of the reciprocal lattice: 2|5 %

asxal alxa.z

3 b3=277a1.a2xa3. (13)

a, Xa
= = 5 b2=277'
a;*a, X a, a;*a; X a;

If a,. a,. a, are primitive vectors of th : '
primitive vectors of the reciprocal lattice Each vector defined by (13) is

orthogonal to two axis vectors of the crystal lattice. Thus b,, by, b; have the

b, =27

ropert
S b;-a; =275 , (14)
whereﬁ,-j = 1if =jand8,.j = 0ifi #j.
Points in the reciprocal lattice are mapped by the set of vectors
G == Ulbl . 3 Ugbg T 'D3b3 5 (].5)

where v, vy, v; are integers. A vector G of this form is a reciprocal lattice vector.
VA =R =




Reciprocal Lattice {85

1. Every crystal has two lattices associated with it :
the crystal lattice, and the reciprocal lattice.

oo T8 &b 15 T f

2. The reciprocal lattice is a lattice in the Fourier space
associated with the crystal.

3. Addiffraction pattern of crystal is a map of the reciprocal
lattice of the crystal.



Bragg angle 6=¢; ¢+¢=90°; sin®=sing =cosé¢

Ker=krcos¢=Kkrsing=kr sin0

Incident beam :
Outgoing beam

k=2n/A
Figure 6 The difference in path length of the incident wave k at the points O, r is r sin @, and the

d&am&m_phasmglmizmnm.xdmhmal_tg_k_F or the diffracted wave the dif-

ference in phase angle is —k’ * r. The total difference in phase angle is (k — k') - r, and the wave

scattered from dV at r has the phase factor exp[i(k — k') - r] relative to the wave scattered from a

volume element at the origin O.




Ak
k

Figure 7 Definition of the scattering vector Ak such that
k + Ak = k'. In elastic scattering the magnitudes satisfy
k' = k. Further, in Bragg scattering from a periodic lattice,

any allowed Ak must equal some reciprocal lattice vector G.




Diffraction Conditions

Theorem. The set of reciprocal lattice vectors G determines the possible

X-ray reflections.

We see in Fig. 6 that the difference in phase factors is expli(k — k') - r]
between beams scattered from volume elements r apart.

The total amplitude of the scattered wave in the direction of k' is
proportional to the integral over the crystal of n(r) dV times the phase factor

expli(k — k') - rl.

the quantity F that we call the scattering amplitude:
F = [ dVn(r) explitk — k') - r]=[ dV n(r) exp(—iAk * 1) , (18)
where k — k' = —Ak, or
k+ Ak =k’ . (19)

Here Ak measures the change in wavevector and is called the scattering
vector (Fig. 7).



We introduce into (18) the Fourier components (9) of n(r) to obtain for
the scattering amplitude

F=2 [dVngexpli(G— Ak) - r] . (20)
G

When the scattering vector Ak is equal to a particular reciprocal lattice vector,

And F is ~0 when Ak # G - (21)

the argument of the exponential vanishes and F = Vn.

In elastic scattering of a photon its energy fw is conserved,
Thus the magnitudes k and k' are equal, and k* = k’?, a result that
holds also for elastic scattering of electron and neutron beams.

k + G = k', so that the diffraction condition is written as (k + G)? = k2, or




This is the central result of the theory of elastic scattering of waves in a

periodic lattice.

This particular expression is Aften used as the condition for diffraction.

Equation (23) is anothg/r statement of the Bragg condition (1). The result
of Problem 1 is that the spacing d(hkl) between parallel lattice planes that are
normal to the direction ¢ = hb, + kb, + lb; is d(hkl) = 2m/IGl. Thus the
result 2k - G = G* may bg written as

2(27/A) sin @ = 2w/d(hkl) , |G| = 2n/d

or 2d(hkl) sin @ = A. Here 6 is the angle between the incident beam and the
crystal plane.

The integers hkl that define G are not necessarily identical with the in-
dices of an actual crystal plane, because the hkl may contain a common factor
n, whereas in the definition of the indices in Chapter 1 the common factor has
been eliminated. We thus obtain the Bragg result:

2d sin @ = nA (24)

where d is the spacing between adjacent parallel planes with indices h/n,
k/n, l/n.



Laue Equations

The original result (21) of diffraction theory, namely that Ak = G, may be
expressed in another way to give what are called the Laue equations.

Take the scalar product of both Ak and G successively with a,, a,, a;.
From (14) and (15) we get

a, * Ak = 27, ; a, * Ak = 27v, ; a; * Ak = 270, . (25)

These equations have a simple geometrical interpretation. The first equation
a, * Ak = 27rv, tells us that Ak lies on a certain cone about the direction of a,.
The second equation tells us that Ak lies on a cone about a, as well, and the
third equation requires that Ak lies on a cone about a.

Thus, at a reflection Ak must satisfy all three equations; it must lie at the
common line of intersection of three cones, which is a severe condition that

can be satisfied only by systematic sweeping or searching in wavelength or
crystal orientation—or by sheer accident.



Ewald Sphere Construction

Reciprocal lattice

Figure 8 The points on the right-hand side are reciprocal-lattice points of the crystal. The vector
k is drawn in the direction of the incident x-ray beam, and the origin is chosen such that k termi-
' int. We draw a sphere of radius k = 2a/A about the origin of k.
A diffracted beam will be formed if thl§ sphere intersects any other point in thc recmlocal lattice.
The sphere as drawn inter 1 : ' /j o

G. The diffracted x-ray beam is in the dnectlon k' = k + G. The angle 6 is the Bragg angle of

Fig. 2. This construction is due to P. P. Ewald.



BRILLOUIN ZONES

A Brillouin zone is defined as a Wigner-Seitz primitive cell in

the reciprocal lattice.
Take (23) divided by 4 at both sides

k-(3G)=(:G) (26)

We now work in reciprocal space, the space of the ks and G’s. Select a
vector G from the origin to a reciprocal lattice point. Construct a plane normal
to this vector G at its midpoint. This plane forms a part of a zone boundary
(Fig. 9a). An x-ray beam in the crystal will be diffracted if its wavevector k has
the magnitude and direction required by (26). The diffracted beam will then
be in the direction k — G, as we see from (19) with Ak = —G. Thus the
Brillouin construction exhibits all the wavevectors k which can be Bragg-

reflected by the crystal.




Plane 1 Plane 2
-

Figure 9a Reciprocal lattice points near the point O at
the origin of the reciprocal lattice. The reciprocal lattice
vector G¢ connects points OC; and Gp connects OD.
Two planes 1 and 2 are drawn which are the perpendic-
ular bisectors of G¢ and Gp, respectively._ Any vector
from the origin to the plane 1, such as k), will satisfy the
diffraction condition k, - (5 G¢) = (3 G¢)®. Any vector
from the origin to the plane 2, such as k;, will satisfy the
diffraction condition k, * (5 Gp) = (5 Gp)*




The set of planes that are the perpendicular bisectors of the reciprocal lattice
vectors is of general importance in the theory of wave propagation in crystals. A
wave whose wavevector drawn from the origin terminates on any of these planes
will satisfy the condition for diffraction.

These planes divide the Fourier space of the crystal into fragments, as shown in
Fig. 9b for a square lattice. The central square is a primitive cell of the reciprocal
lattice. It is a Wigner-Seitz cell of the reciprocal lattice.

Figure 9b Square reciprocal lattice with reciprocal
lattice vectors shown as fine black lines. The lines

shown in white are perpendicular bisectors of the rec-
iprocal lattice vectors. The central square is the small-

est volume about the origin which is bounded entirely
by white lines. The square is the Wigner-Seitz primi-
\ iv f reci | lattice. It is called the first
= B .” ®

the first Brillouin zone



The central cell in the reciprocal lattice is of special importance in the the-
ory of solids, and we call it the first Brillouin zone. The first Brillouin zone is
the smallest volume entirely enclosed by planes that are the perpendicular bi-

sectors of the reciprocal lattice vectors drawn from the origin.

The first Brillouin zone of an oblique lattice in two dimensions is
constructed in Fig. 10, and of a linear lattice in one dimension in Fig. 11.
The zone boundaries of the linear lattice are at k = +m/a, where a is the
primitive axis of the crystal lattice.

Historically, Brillouin zones are not part of the language of x-ray diffrac-
tion analysis of crystal structures, but the zones are an essential part of the

analysis of the electronic energy-band structure of crystals.




YARVAY

First Brillouin zone

o<

2-D obligue lattice

Figure 10 Construction of the first Brillouin

zone for an oblique lattice in two dimensions, We

first draw a number of vectors from O to nearby
points in the reciprocal lattice. Next we construct
lines perpendicular to these vectors at their mid-
points. The smallest enclosed area is the first Bril-
louin zone.



1-D lattice
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Linear crystal lattice

Figure 11 Crystal and reciprocal lattices in ong dimension. The basis vector in the reciprocal lat-
tice is b, of length equal to 2m/a. The shortest reciprocal lattice vectors from the origin are b and
—b. The perpendicular bisectors of these vecjors form the boundaries of the first Brillouin zone.
The boundaries are at k = *#/a.

First Brillouin zone



Reciprocal Lattices



Reciprocal Lattice of a Simple Cubic (sc) crystal
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Reciprocal Lattice of a bcc Lattice

a, =% a (-x+y+z)

=

b, = (27/a) (y+2)

(m/a) (ty £2)

Real Space Lattice

a, =" a (x-y+z) a; =% a (+x+y-z)

Reciprocal Lattice
b, = (21t/a) (x+z)

15t Brillouin zone

(rt/a) (£x £z)

cube of volume: 2(2n/a)3

. . -1 3
Volume: a;-a,xaz;=’a

b, = (2m/a) (x+y)

(m/a) (£x ty)




Reciprocal Lattice of a fcc Lattice

a, =’ a (+y+z)

=

b, = (2nt/a) (-x+y+z)

(2mt/a) (£2x)

Real Space Lattice

a, =" a (x+z) a; =¥ a (+x+y)

Reciprocal Lattice

b, = (2nt/a) (+x-y+z)

15t Brillouin zone

(27/a) (£2y)

cube of volume: (4n/a)?

Volume: a,+a, xaz=% a?

b, = (2t/a) (x+y-z)

(2mt/a) (£22)




Fourier Analysis of the Basis

F= g J dV ng expli(G — Ak) * r] . (20)
3 Ak=c

Fe =N | dVn(r)exp(—iG x) = NSG.\ (39)

structure factor

)= 3 e =) (40)

—

atomic form factor (atomic property)

fi =1 dV np) exp(—iG - p) , (42)

Sc = 2. fjexp(—iG ') . (43)
J



bcc unit (cubic) cell P W

For each atom of the unit cell
I =Xa,; +ya, +zas Real Lattice 2:(%, %2, %)

mes) 1, =0;r,=)%a, +%a, + J2a,

1:(0,0,0) >

G=v,b, +v,b, +v,b; Reciprocal Lattice

Sg =2 fexp(-iG - r;) Structure Factor

N

Atomic Form Factor
G:r= (vjb1 + vjb2 + vjb3 ). (xja1 +ya, + a3 )=2m (vjxxj + v,y + vjzzj)

Sg =2 f,exp(-i2 7 (v, x; + v,y + v;,2))

== f S, = 0 then even if G is a reciprocal lattice vector => no scattering

m=) the solution is independent of how we choose the unit cell and basis



bcc unit (cubic) cell

Sg =2 fexp(-i2 T (vix; + vyy; + v;z))

=f(1+exp(-imn (v, +v,+V,)) 2:(%, %2, %)

1:(0,0,0)

=0if v, +v,, + v, = odd integer for example (100), (111),....
= 2fif v, +v,, + v, = even integer for example (200), (110), ...



Figure 16 Explanation of the absence of a (100) reflection from a body-centered cubic lattice.

The phase difference between successive planes is 7, so that the reflected amplitude from two
adjacent planesis 1 + e =1—1= 0.



FCC (conventional unit cell: 4 atoms)

(2,0, %)

(%2, %,0)

Sg =2, exp(-i2 7 (v, + v, y; + v;,2))

= (1 + exp(-im (v,y; + v;,z) + exp(-im (v x; + v;,2)) + exp(-i (v, X + v,y )

0 for even — odd (mixed) — (211), (221), ....

4f for only even or only odd — (311), (222), .....






(200) '

KClI
(220)
(420) (400) (222)
I L |J 1A | | l/
| | | | [ | (200)1
KBr
(111)
(420) (400) (222)

Looks like sc with a/2 unit cell !

Looks like fcc !



Periodic Table of Elements

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1  Atomic # ‘
1H Symhd
T et Solid | Nonmetals |

43 gz
=
2 Be g2 -
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s.0i2182 g @ CI
12 H 2

oo

o &

For elements with no stable isotopes, the mass number of the isotope with the longest half-life is in parentheses.
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fi=1dVnip) exp(—iG - p) , (42)

\ atomic form factor

spherically symmetric distribution of electron
density

fi=2m [ drr* d(cos &) n(r) exp(—iGr cos a)

eiGr _ e—iGr
=2 [ dr rny(r) - T ,




fi=4m [ drn(r)r? sir(l;fr . (50)

(1) if electron density localized at r=0: (sin Gr)/Gr ~ 1
j} =4 [ dr nj(r)r‘z =7 . (51)

f represents the ration of the radiation amplitude scattered by the actual distribution in
an atom to that scattered by one electron localized at a point.

(2) Scattering in forward direction (G = 0)
f=2
(3) Most electron scattering centers are not affected by the chemical environment.

Therefore, the atomic form factor is not very sensitive to small redistribution of electrons
due to bonding (valence electrons)
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Figure 18 Absolute experimental atomic scattering factors for metallic aluminum, after Bat-
terman, Chipman, and DeMarco. Each observed reflection is labeled. No reflections occur for
indices partly even and partly odd, as predicted for an fcc crystal.




